

Progetto Ematologia Romagna

DALLO STUDIO DEL GENOMA UNA TERAPIA SENZA CITOTOSSICI IN ONCOEMATOLOGIA: PROMESSA O REALTÀ?

LEUCEMIA ACUTA MIELOIDE

Cristina Papayannidis, MD, PhD

Disclosures

Honoraria: Novartis, Amgen, Pfizer, Astellas, Abbvie

Advisory Board: Novartis, Janssen, Amgen, Pfizer, Abbvie

Clonal heterogeneity in AML

Landscape of driver mutations in AML

Papaemmanuil E, NEJM 2016

Can we improve AML survival with a targeted approach?

Kantarjian H et al, Blood Cancer Journal 2021

HMAs for Older Unfit AML Patients: Active but suboptimal

0.9

0.8

D.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0

CCR

Survival Probability

Azacitidine

12

Azacitidine

CR, 20%

CR+CRi, 28%

16

Median OS 10.4 months

Decitabine CR+CRi, 28% CR, 16% Median OS 7.7 months Median time to best response 4.3 months

1:1 Aza vs. BSC (18%) 10.4 months LDAC (64%) 46.5% IC (18%) 6.5 months 'm--00 34.2%

20

RBC TI (39%), platelet TI (41%)

Time from Randomization (months)

24

28

32

36

AZA-AML-001 (N=488)

HR 0.85 (95% CI, 0.69-1.03) P = 0.10)

Kantarjian H et al, JCO 2012

Dombret H et al, Blood 2015

Venetoclax: a new player

Konopleva M et al, Cancer Discovery 2016

VIALE-A Study Design

Eligibility

- Patients with newly diagnosed confirmed AML
- Ineligible for induction therapy defined as <u>either</u>
 - ♦ ≥75 years of age
 - 18 to 74 years of age with at least one of the co-morbidities:
 - CHF requiring treatment or Ejection Fraction ≤50%
 - Chronic stable angina
 - DLCO $\leq 65\%$ or FEV1 $\leq 65\%$
 - ECOG 2 or 3

Exclusion

- Prior receipt of any HMA, venetoclax, or chemotherapy for myelodysplastic syndrome
- Favorable risk cytogenetics per NCCN
- Active CNS involvement

VIALE-A: responses

	Aza + Ven (n = 286)	Aza + Pbo (n = 145)	P value	
CR + CRi rate (95% CI), %	66.4 (60.6-71.9)	28.3 (21.1-36.3)	<.001	
CR + CRi by start of cycle 2 (95% Cl), %	43.4 (37.5-49.3)	7.6 (3.8-13.2)	<.001	
CR rate (95% CI), %	36.7 (31.1-42.6)	17.9 (12.1-25.2)	<.001	
 Transfusion independence* (95% Cl), % RBC Platelets 	59.8 (53.9-65.5) 68.5 (62.8-73.9)	35.2 (27.4-43.5) 49.7 (41.3-58.1)	<.001 <.001	
 CR + CRi rate in subgroups (95% Cl), % IDH1/2 FLT3 NPM1 TP53 	75.4 (62.7-85.5) 72.4 (52.8-87.3) 66.7 (46.0-83.5) 55.3 (38.3-71.4)	10.7 (2.3-28.2) 36.4 (17.2-59.3) 23.5 (6.8-49.9) 0	<.001 .021 .012 <.001	
EFS (95% CI), mo	9.8 (8.4-11.8)	7.0 (5.6-9.5)	<.001	
 Median age (range): 76 yrs (49-91) *defined as ≥ 56 days with no RBC or platelet transfusion between first and last day of treatment DiNardo C et al, NEJN 				

VIALE-A: OS

DiNardo C et al, NEJM 2020

VIALE-A: safety

Event	Azacitidins-Venetoclax Group (N=283)		Azacitidine-Placebo Group (N= 144)	
	All Grades†	≥Grade 3‡	All Grades†	aGrade 3
		number of patient	ts (percent)	
All adverse events	283 (100)	279 (99)	144 (100)	139 (97)
Hematologic adverse events	236 (83)	233 (82)	100 (69)	98 (68)
Thrombocytopenia	130 (46)	126 (45)	58 (40)	55 (38)
Neutropenia	119 (42)	119 (42)	42 (29)	41 (28)
Febrile neutropenia	118 (42)	118 (42)	27 (19)	27 (19)
Anemia	78 (28)	74 (26)	30 (21)	29 (20)
Leukopenia	58 (21)	58 (21)	20 (14)	17 (12)
Nonhematologic adverse events				
Nausea	124 (44)	5 (2)	50 (35)	1 (1)
Constipation	121 (43)	2 (1)	56 (39)	2 (1)
Diamhea	117 (41)	13 (5)	48 (33)	4 (3)
Vomiting	84 (30)	6 (2)	33 (23)	1 (I)
Hypokalemia	81 (29)	30 (11)	41 (28)	15 (10)
Peripheral edema	69 (24)	1 (<1)	26 (18)	0
Pyrexia	66 (23)	5 (2)	32 (22)	2 (1)
Fatigue	59 (21)	8 (3)	24 (17)	2 (1)
Decreased appetite	72 (25)	12 (4)	25 (17)	1 (1)
Infections	239 (84)	180 (64)	97 (67)	74 (51)
Pneumonia	65 (23)	56 (20)	39 (27)	36 (25)
Serious adverse events§	235 (83)	232 (82)	105 (73)	102 (71)
Febrile neutropenia	84 (30)	84 (30)	15 (10)	15 (10)
Anemia	14 (5)	14 (5)	6 (4)	6 (4)
Neutropenia	13 (5)	13 (5)	3 (2)	3 (2)
Atrial fibrillation	13 (5)	10 (4)	2 (1)	2 (1)
Pneumonia	47 (17)	46 (16)	32 (22)	31 (22)
Sepsis	16 (6)	16 (6)	12 (8)	12 (8)

DiNardo C et al, NEJM 2020

PROGETTO EMATOLOGIA ROMAGNA Cesena, 18 settembre 2021

U.S. National Library of Medicine

ClinicalTrials.gov

Gimema AML 2320

Prospective and retrospective observational evaluation of **real world** outcome of unfit AML patients treated with the combination of Venetoclax plus HMAs, under the italian law no.648/96

Italian observational study of patients with AML treated with small Molecule inhibiting BCL-2 (AVALON)

How can we improve these results?

Table 2 Combination regimens with venetoclax under investigation in AML. Triplet Venetoclax + HMA backbone Doublet Venetoclax backbone HMA (eg, AZA, DEC) FLT3 inhibitor (eg, midostaurin, gilteritinib, guizartinib) IDH1/2 inhibitor (eg, ivosidenib, enasidenib) LDAC FLT3 inhibitor (eg, midostaurin, gilteritinib, guizartinib) APR-246 (TP53 target) IDH1/2 inhibitor (eq, ivosidenib, enasidenib) MCL1 inhibitor (CYC065, AMG 176) MDM2 antagonist (eg, idasanutlin) Immune therapies (CD123 ADC, CD70 antibody, PD-1 inhibitors, TIM-3 inhibitors, CD47 antibodies) CDK9 inhibitor^a (eq, alvocidib, voruciclib) MCL1 inhibitor (S64315, AZD5991)

ADC antibody-drug conjugate, AML acute myeloid leukemia, AZA azacitidine, CDK cyclin-dependent kinase, DEC decitabine, FLT3 FMS-like tyrosine kinase 3, HMA hypomethylating agent, IDH isocitrate dehydrogenase, LDAC low-dose cytarabine, MCL1 myeloid cell leukemia-1, MDM2 mouse double minute 2, PD-1 programmed cell death protein 1, TIM-3 T cell immunoglobulin and mucin domain-containing protein 3. ^aData from Bogenberger et al.²⁴ and Luedtke et al.²⁵.

Daver N et al, Blood Cancer Journal 2020

To wait or not to wait for the results of genetic tests?

Minor treatment delay to incorporate mutational data into treatment decision is safe

Rollig C et al, Blood 2020

Age-related recurring gene mutations:

IDH Mutations as a Target in AML

- IDH = isocitrate dehydrogenase, a critical enzyme of the citric acid cycle
- *IDH*m are gain of function mutations
 - IDH1 R132, IDH2 R140, IDH2 R172
- IDHm produces 2-HG, which alters DNA and histone methylation and blocks cellular differentiation
- Enasidenib (AG-221) is a selective, oral, potent inhibitor of mutant IDH2 enzyme.
- Ivosidenib (AG-120), is a selective, oral, potent inhibitor of mutant IDH1 enzyme.

DiNardo CD et al. *Leukemia*. 2016;30:980-984. Prensner JR, Chinnaiyan AM. *Nat Med*. 2011;17:291-293.

Original reports Aleksan

Mutant Isocitrate Dehydrogenase 1 Inhibitor Ivosidenib in Combination With Azacitidine for Newly Diagnosed Acute Myeloid Leukemia

Courtney D. DiNardo, MD¹; Anthony S. Stein, MD²; Eytan M. Stein, MD³; Amir T. Fathi, MD⁴; Olga Frankfurt, MD⁵; Andre C. Schuh, MD⁵; Hartmut Döhner, MD⁷; Giovanni Martinelli, MD⁸; Prapti A. Patel, MD⁹; Emmanuel Raffoux, MD¹⁰; Peter Tan, MBBS¹¹; Amer M. Zeidan, MBBS¹²; Stéphane de Botton, MD, PhD¹³; Hagop M. Kantarjian, MD¹; Richard M. Stone, MD¹⁴; Mark G. Frattini, MD, PhD¹⁵; Frederik Lersch, RN¹⁶; Jing Gong, PhD¹⁵; Diego A. Gianolio, PhD¹⁷; Vickie Zhang, PhD¹⁷; Aleksandra Franovic, PhD¹⁸; Bin Fan, PhD¹⁷; Meredith Goldwasser, ScD¹⁷; Scott Daigle, MS¹⁷; Sung Choe, PhD¹⁷; Bin Wu, PhD¹⁷;

Thomas Winkler, MD¹⁷; and Paresh Vyas, MD, PhD¹⁹

Characteristic	Measure	
Median age, years (range)	76.0 (61.0-88.0)	
Age \geq 75 years	12 (52.2)	
Male/female, No.	11/12	
Median mutant IDH1 VAF in BMMCs, % (range) ^a	42 (17-48)	
ECOG PS at baseline		
0	5 (21.7)	
1	14 (60.9)	
2	4 (17.4)	
Disease history		
De novo AML	15 (65.2)	
Secondary AML	8 (34.8)	
Antecedent myelodysplastic syndrome	2 (8.7)	
Antecedent myeloproliferative neoplasm	2 (8.7)	
Treatment related	4 (17.4)	
IDH1 mutation type		
R132C	16 (69.6)	
R132H	4 (17.4)	
R132L	3 (13.0)	
Cytogenetic risk status by investigator		
Intermediate	15 (65.2)	
Poor	5 (21.7)	
Failure/missing	3 (13.0)	

JCO 2020

Response Category	Response
CR + CRh,* No. (%) [95% CI]	16 (69.6) [47.1 to 86.8]
Median time to CR/CRh, months (range)	2.8 (0.8-11.5)
Median duration of CR/CRh, months [95% CI]	NE [12.2 to NE]
CR, No. (%) [95% CI]	14 (60.9) [38.5 to 80.3]
Median time to CR, months (range)	3.7 (0.8-15.7)
Median duration of CR, months [95% CI]	NE [9.3 to NE]
CRh, ^a No. (%)	2 (8.7)
ORR, ^b No. (%) [95% CI]	18 (78.3) [56.3 to 92.5]
Median time to response, months (range)	1.8 (0.7-3.8)
Median duration of response, months [95% CI]	NE [10.3 to NE]
Best response, ^c No. (%)	
CR	14 (60.9)
CRi/CRp	2 (8.7)
MLFS	2 (8.7)
SD	4 (17.4)
NA	1 (4.3)

JCO 2020

Cell Death and Differentiation (2015) 22, 2133–2142 © 2015 Macmillan Publishers Limited All rights reserved 1350-9047/15 www.nature.com/cdd

npg

MLN4924 induces Noxa upregulation in acute myelogenous leukemia and synergizes with Bcl-2 inhibitors

KLB Knorr¹, PA Schneider², XW Meng^{1,2}, H Dai^{1,2}, BD Smith³, AD Hess³, JE Karp³ and SH Kaufmann^{*,1,2}

PEVENAZA: study design

Randomized, open-label, controlled, phase 2 study (NCT04266795)¹

IV, intravenous; PD, progressive disease; SC, subcutaneous; WHO, World Health Organization.

1. Clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT04266795

LETTERS

medicine

Precision medicine treatment in acute myeloid leukemia using prospective genomic profiling: feasibility and preliminary efficacy of the Beat AML Master Trial

Amy Burd¹⁰⁰, Ross L Levine^{10,2,10}, Amy S. Ruppert², Alice S. Mims^{10,3}, Uma Borate⁴, Eytan M. Stein², Prapti Patel³, Maria R. Baer⁴, Wendy Stock⁷, Michael Deininger^{10,4}, William Blum⁹, Gary Schiller¹⁰, Rebecca Olin¹¹, Mark Litzow¹², James Foran¹⁰, Tara L. Lin^{10,14}, Brian Ball^{10,2}, Michael Boyiadzis^{10,16}, Elie Traer⁴, Olatoyosi Odenike⁷, Martha Arellano⁹, Alison Walker², Vu. H. Duong⁶, Tibor Kovacsovics⁸, Robert Collins^{10,5}, Abigail B. Shoben³, Nyla A. Heerema³, Matthew C. Foster¹⁶, Jo-Anne Vergilio¹⁷, Tim Brennan¹⁷, Christine Vietz¹⁷, Eric Severson¹⁷, Molly Miller³, Leonard Rosenberg¹, Sonja Marcus¹, Ashley Yocum¹, Timothy Chen³, Mona Stefanos², Brian Druker^{0,4,10} and John C. Byrd^{0,2,10,53}

Can we improve AML survival with a targeted approach?

Kantarjian H et al, Blood Cancer Journal 2021

Chemotherapy and clonal evolution in AML

Genetic mapping demonstrates how clonal evolution can result in an AML clone that is genetically distinct at relapse compared with diagnosis

Adult fit patients therapy: a still chemo-based approach

Heuser M et al, Annals of Oncology 2020

24 A Phase 1 Study of Gilteritinib in Combination with Induction and Consolidation Chemotherapy in Patients with Newly Diagnosed AML: Final Results

Program: Oral and Poster Abstracts Type: Oral Session: 616. Acute Myeloid Leukemia: Novel Therapy, excluding Transplantation: Novel combination therapies in treatment of newly diagnosed AML Hematology Disease Topics & Pathways: Adult, Diseases, Therapies, Combinations, Study Population, Clinically relevant, Myeloid Malignancies

Saturday, December 5, 2020: 7:30 AM

*Keith W. Pratz, MD*¹, Mohamad Cherry, MD, MS², Jessica K. Altman, MD³, Brenda W. Cooper, MD⁴, Jose Carlos Cruz, MD⁵, Joseph G. Jurcic, MD⁶, Mark Levis, MD, PhD¹, Tara Lin, MD⁷, Alexander E. Perl, MD⁸, Nikolai A. Podoltsev, MD, PhD⁹, Gary J. Schiller, MD¹⁰, Jason E. Hill, PhD^{11*}, Angela James, PhD^{11*}, Qiaoyang Lu, MS^{11*} and Ramon V. Tiu, MD^{12*}

Response Parameter,ª n (%)	<i>FLT3</i> ^{mut+} Patients who Received 120 mg/d (N=38) ^b
CR	15 (39.5)
CRp	1 (2.6)
CRi	15 (39.5)
CRc	31 (81.6)

ASH 2020

NIH U.S. National Library of Medicine

ClinicalTrials.gov

Row	Saved	Status	Study Title	Conditions	Interventions	Locations
1		Recruiting	A Study of Gilteritinib Versus Midostaurin in Combination With Induction and Consolidation Therapy Followed by One-year Maintenance in Patients With Newly Diagnosed Acute Myeloid Leukemia or Myelodysplastic Syndromes With Excess Blasts-2 With FLT3 Mutations Eligible for Intensive Chemotherapy	 Acute Myeloid Leukemia Myelodysplastic Syndrome With Excess Blasts-2 	 Drug: Gilteritinib Drug: Midostaurin 	 Erasmus MC Rotterdam, Netherlands
2		Recruiting	Gilteritinib vs Midostaurin in FLT3 Mutated Acute Myeloid Leukemia	Acute Myeloid Leukemia	 Drug: Gilteritinib Drug: Midostaurin Drug: Daunorubicin Drug: Cytarabine 	 HonorHealth Research Institute Scottsdale, Arizona, United States University of California, San Francisco-Fresno (University Oncology Associates) Clovis, California, United States UCLA Los Angeles, California, United States (and 37 more)

Adult fit patients therapy

Heuser M et al, Annals of Oncology 2020

Current GIMEMA trial: AML 1718 for intermediate and high risk AML patients

fondazione GIMEMA ^{onlus} per la promozione e lo sviluppo della ricerca scientifica sulle malattile emotologiche. FRANCO MANDELLI

PROTOCOL TITLE:	A SAFETY RUN-IN AND PHASE 2, OPEN-LABEL, MULTICENTRE, STUDY INVESTIGATING SAFETY, TOLERABILITY AND EFFECTIVENESS OF VENETOCLAX ADD IN COMBINATION AT FLUDARABINE, CYRATABINE AND IDARUBICINE IN INDUCTION THERAPY OF NEW ONSET NON-M3 ACUTE MYELOID LEUKEMIA	Run-in FLAI+V400 mg 6 pts Run-in FLAI+V600 mg 6 pts	If ok V400 mg 22 pts R If ok V600 mg 22 pts	Expansion of lower effective dose level cohort 55 pts
SHORT NAME:	V-FIRST		<u> </u>	
PROTOCOL NUMBER:	AML1/18	Safaty PLIN IN	DAPT 1	DAPT 2
VERSION NUMBER:	2.0	Salety KON-IN	PARTI	PART 2
EUDRACT NUMBER:	2018-000392-33			
CLINICAL TRIAL NUMBER	NCT03455504			
TEST PRODUCT:	VENETOCLAX			
SPONSOR:	Fondazione GIMEMA Franco Mandelli Onlus			
DATE FINAL:	February, 18th 2020			

Venetoclax Combined With FLAG-IDA Induction Check for and Consolidation in Newly Diagnosed and Relapsed or Refractory Acute Myeloid Leukemia

Courtney D. DiNardo, MD, MSCE¹; Curtis A. Lachowiez, MD²; Koichi Takahashi, MD, PhD¹; Sanam Loghavi, MD³; Lianchun Xiao, MS⁴; Tapan Kadia, MD¹; Naval Daver, MD¹; Maria Adeoti, RN¹; Nicholas J. Short, MD¹; Koji Sasaki, MD³; Sa Wang, MD³;

Gautam Borthakur, MD¹; Ghayas Issa, MD¹; Abhishek Maiti, MBBS¹; Yesid Alvarado, MD¹; Naveen Pemmaraju, MD¹;

Guillermo Bortnakur, mD; Guilyas Issa, mD; Honishek Main, MDD; tesid Avarado, MD; Naveen Penimaraju, mD; Guillermo Montalban Bravo, MD¹; Lucia Masarova, MD¹; Musa Yilmaz, MD¹; Nitin Jain, MD¹; Michael Andreeff, MD, PhD¹; Elias Jabbour, MD¹; Guillermo Garcia-Manero, MD¹; Steven Komblau, MD¹; Farhad Ravandi, MD¹; Marina Y. Konopleva, MD, PhD¹; and Hagop M. Kantarjian, MD¹

Parameter	Phase IIA ND-AML ($\pi = 29$)	Phase IB R/R-AML (n = 16)	Phase IIB R/R-AML (n = 23)
Age, years	45 (20-65)	51 (20-73)	47 (22-66)
Sex (male)	13	10	14
/EN dose level			
Dose level -1 (VEN 200 mg, D1-21)		8	-
Alternate dose level -1 (VEN 200 mg, D1-14)	-	5	-
Dose level 0 (VEN 400 mg, D1-14)	29	3	23
Median No. of prior therapies	-	2 (1-6)	1 (1-3)
Prior HSCT	(m)	7	7
Median duration of prior CR, months		15.1 (2.3-44)	12.6 (2.7-70)
Salvage 1	3	8	19
Salvage 2	(C=)	3	3
Salvage 3 or greater	3. 	5	1
Median blast (%) at enrollment*	41 (4-85)	63 (6-94)	46 (1-89)
Extramedullary leukemia	3		1
AML type			
de novo AML	17		-
sAML	5		-
IS-AML	2		-
tAML	5		-
R/R-AML		16	23
ELN risk group			
Favorable	5	6	6
Intermediate	13	2	з
Adverse	11	8	14

JCO 2021

All (N = 68)	Phase IIA ND-AML (n = 29)
56 (82 [71 to 91])	28 (97 [85 to 99])*
52 (76 [65 to 86])	26 (90 [73 to 98])
37 (53)	20 (69)
10 (15)	5 (17)
5 (7)	1 (3)
43 (83 [70 to 92])	25 (96 [80 to 99])
4	2
12	1
NR	NR
18 (10.1 to NE)	NR
70 (59 to 81)	89 (78 to 100)
56 (44 to 71)	85 (72 to 100)
NR	NR
81 (71 to 91)	100
70 (58 to 83)	94 (84 to 100)
	All (N = 68) 56 (82 [71 to 91]) 52 (76 [65 to 86]) 37 (53) 10 (15) 5 (7) 43 (83 [70 to 92]) 4 12 NR 18 (10.1 to NE) 70 (59 to 81) 56 (44 to 71) 56 (44 to 71) NR 81 (71 to 91) 70 (58 to 83)

Median f-up: 12 months

DiNardo C et al, JCO 2021

• Three deaths in CR (all R/R AML) due to systemic mucormycosis with typhlitis, SBO, perforated fistula (> Day 100), HLH complicating *E. coli* and RSV infection with no response to HLH therapy (> Day 100), and lung aspergilloma and respiratory hemorrhage (Day 51)

R/R patients therapy: targeted therapy in specific subsets

Heuser M et al, Annals of Oncology 2020

Gilteritinib vs chemo: better CR rate

CR/CRh: 34% (Gilteritinib) vs 15.3% (chemo)

The CR/CRh rate was 34.0% in the gilteritinib arm and 15.3% in the salvage chemotherapy arm (treatment difference: 18.6%; 95% CI: 9.8–27.4)

CR/CRh rate was a co-primary endpoint of the study and was analysed based on the response analysis dataset at first interim in the gilteritinib arm only

CR/CRh rate was summarised descriptively at the final analysis for both treatment arms

Perl AE et al. N Engl J Med. 2019;381:1728–1740.

Gilteritinib vs chemo: better OS

Transplantation rate: 25.5% (Gilt) 15.3% (chemo)

Abbreviations: ML, acute myeloid leukemia; Cl, confidence interval; FLT3^{mut+}, FLT3-mutation-positive; HR, hazard ratio; ITT, intention-to-treat; OS, overall survival; R/R, relapsed or refractory.

Perl A et al, EHA 2021

Patterns of Resistance Differ in Patients with Acute Myeloid Leukemia Treated with Type I versus Type II FLT3 inhibitors

Ahmad S. Alotalbl^{1,●}, Musa Yilmaz^{1,●}, Rashmi Kanagal-Shamanna², Sanam Loghavl², Tapan M. Kadla¹, Courtney D. DiNardo¹, Gautam Borthakur¹, Marina Konopleva¹, Sherry A. Pierce¹, Sa A. Wang², Guilin Tang², Veronica Guerra¹, Bachar Samra¹, Naveen Pemmaraju¹, Eilas Jabbour¹, Nicholas J. Short¹, Ghayas C. Issa¹, Maro Ohanian¹, Guillermo Garcia-Manero¹, Kapil N. Bhalla¹, Keyur P. Patel², Kolchi Takahashi¹, Michael Andreett¹, Jorge E. Cortes³, Hagop M. Kantarjian¹, Farhad Ravandi¹, Naval Daver¹

¹The Department of Leukemia, MD Anderson Cancer Center, Houston, Texas.

²The Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas

⁸Georgia Cancer Center, Augusta University, Augusta, Georgia

Type I FLT3-inh→ RAS/MAPK mut

Type II FLT3-inh→ FLT3 D835

Blood Cancer Discovery 2021

BMT CTN Protocol 1506: a phase III trial of Gilteritinib as maintenance therapy after allo HSCT in FLT3 ITD+ patients

AML in CR1 who are ≥30 days and ≤90 days from scheduled allogeneic HSCT.

N= 346 subjects

Randomized (1:1; stratified by conditioning regimen intensity, time from HSCT [Day 0] to randomization [30-60 days vs 61-90 days], and presence of minimal residual disease [MRD] in the pre-transplant bone marrow sample)

Oral gilteritinib (120 mg) or matching placebo for 2 years. The primary endpoint is relapse-free survival (RFS) in the two treatment arms;

MRD status will continue to be monitored over the duration of the maintenance therapy, although investigators will be blinded to the MRD assay results

Mark J. Levis, et al 1506: A Phase 3 Trial of Gilteritinib As Maintenance Therapy after Allogeneic Hematopoietic Stem Cell Transplantation in Patients with FLT3-ITD⁺ AML, Blood, 2019

American Society of Hematology Helping hematologists compare blood diseases worldwide

PROGETTO EMATOLOGIA ROMAGNA Cesena, 18 settembre 2021

Now

✓ Moving to triplets

- ✓ Better understanding of mechanisms of resistance to molecular approaches
- ✓ Better understanding of new drugs' management and toxicities
- ✓ Integration between molecular and immunotherapy approaches

Immunotherapy in AML

Yang D et al, Annals of Hematology 2017

Thank you!

Prof M. Cavo

Antonio Curti Stefania Paolini Chiara Sartor Jacopo Nanni Sarah Parisi Gianluca Cristiano Letizia Zannoni

Francesca Bonifazi Mario Arpinati Emanuela Ottaviani Valentina Robustelli Carolina Terragna Simona Soverini Manuela Mancini Lorenza Bandini Nicoletta Testoni Carmen Baldazzi Gabriella Chirumbolo Dorian Forte Martina Barone

cristina.papayannidis@unibo.it